
Evolution and impedance operators of spherically symmetric bianisotropic media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 7543

(http://iopscience.iop.org/0305-4470/39/23/025)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 7543–7560 doi:10.1088/0305-4470/39/23/025

Evolution and impedance operators of spherically
symmetric bianisotropic media

A V Novitsky and L M Barkovsky

Department of Theoretical Physics, Belarusian State University, Nezavisimosti Avenue 4,
220050 Minsk, Belarus

E-mail: Barkovsky@bsu.by

Received 2 March 2006
Published 23 May 2006
Online at stacks.iop.org/JPhysA/39/7543

Abstract
An operator method, which was developed earlier for bianisotropic layered
media with plane and cylindrical interfaces, is generalized to solve spherically
symmetric problems: determination of eigenmodes of spherical waveguides,
investigation of surface waves, calculation of light scattering cross-section by
multi-layer spherical particles. Analytical results are applied to obtain the
modes of the negative-refractive-index waveguide, to determine dispersion
curves of the waves at the spherical interface between isotropic and
bianisotropic media, to reveal the regularities of electromagnetic wave
scattering by spherical dielectric particles.

PACS numbers: 41.85.−p, 78.35.+c

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In electrodynamics there are a number of problems in obtaining the exact analytical solution
of which a certain symmetry (plane, cylindrical, spherical) is required. Some such problems
are obtaining waveguide eigenwaves, the calculation of scattering of electromagnetic waves
by particles, the determination of multipole radiation, the study of light beam propagation,
etc. In the present paper we are interested in the solution of some of the problems mentioned
above which possess spherical symmetry.

Spherical waveguides have been studied for a long time [1] and applied to propagation
of radio waves round the Earth. In the paper [2] electromagnetic waves in a spherically
layered anisotropic dissipative medium were investigated by the normal wave method, which
is based on the spectral theory of linear non-self-conjugate operators. The computation of the
wave numbers of waveguide normal waves can be realized by the impedance recalculation
method [3, 4].
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Theoretically the electromagnetic wave scattering by spherical particles [5, 6] is studied
numerically [7] or using the spherical vector wavefunctions [8, 9]. Such functions are the
solutions of the vector Helmholtz equation. They depend on each spherical coordinate r, θ , ϕ.
The scattering problem lies in determining coefficients of the spherical vector wavefunctions
from boundary conditions.

The operator method was applied earlier for the study of the reflection and guiding in
multi-layer bianisotropic structures with plane [10, 11] or cylindrical [12, 13] symmetry.
In the framework of the operator approach one should separate the variables in Maxwell’s
equations reducing the Maxwell equations to the system of equations of first order for tangential
components of the electric and magnetic fields [14]. The tangential components are situated
in the plane tangent to the interface between two media. Evolution operator (characteristic
matrix, transfer matrix) and impedance tensors of partial waves are the solutions of the system
of equations of first order. Using evolution and impedance operators one can determine
reflection and transmission coefficients of electromagnetic waves propagating in layered
media, as well as dispersion equations and polarizations of the waveguide eigenmodes. It
should be noted that spatial evolution of cylindrical beams in complex media can be also
investigated by means of operator approach [15, 16].

In this investigation the operator method is generalized to the case of spherically symmetric
bianisotropic media. The set of differential equations of first order for spherical waves is
derived in section 2 and solved in section 3. Section 4 is devoted to the ascertainment of
the form of the evolution operators and impedance tensors for isotropic and bianisotropic
spherically symmetric layers. In section 5 we apply operator technique to study eigenmodes
of multi-layer spherical guides, surface waves at spherical interface, light scattering by the
multi-layer spherical particles.

2. Ordinary differential equations of the first order for spherical waves in
bianisotropic media

Classical electromagnetic waves in bianisotropic media

D = εE + αH B = κE + µH (1)

satisfy the Maxwell equations(
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,

(2)

where (r, θ, ϕ) are the spherical coordinates; er (θ, ϕ), eθ (θ, ϕ), eϕ(ϕ) are the base vectors
of the spherical coordinates; e×

r is the tensor dual to the vector er [17]; H, E, B and D
are the strengths and inductions of the magnetic and electric fields. Suppose that dielectric
permittivity ε and magnetic permeability µ tensors, as well as gyration pseudotensors α, κ

can be written as

ξ(r) = ξ1(r)er ⊗ er + ξ2(r)I + iχξ (r)e
×
r , (3)

where ξ corresponds to one of the tensors ε, µ, α, κ; er ⊗ er is the elementary dyad;
I = 1 − er ⊗ er = −e×2

r is the projection operator onto the plane tangent to the spherical
surface (the plane normal to the vector er ). In Maxwell’s equations (2) one can easily separate
the angle ϕ and time t from the rest of coordinates as(

H(r, t)

E(r, t)

)
= e−iωt

∑
m∈Z

eimϕ

(
H(r, θ,m)

E(r, θ,m)

)
, (4)
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where ω is the wave circular frequency. Taking into account the ϕ-differentiation of the fields

∂H(r, t)

∂ϕ
= eimϕ

(
im − sin θe×

θ + cos θe×
r

)
H(r, θ) (5)

the Maxwell equations (2) can be reduced to the following form:(
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(6)

where k = ω/c is the vacuum wave number.
The θ -dependence of the field strengths cannot be expressed by means of a scalar function.

One should use tensor F(θ):(
H(r, θ)

E(r, θ)

)
=

(
F(θ)H(r)

F (θ)E(r)

)
. (7)

In order to separate variables r and θ according to formula (7) the tensor F should satisfy
the commutation relations

[ξ(r), F (θ)] = [
e×

r , F (θ)
] = 0 (8)

as well as the expression

F(θ)−1
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θ
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)
F(θ) = G. (9)

The components of tensor G in spherical coordinates do not depend on the angle θ .
From conditions (8) it follows that the tensor F is of the form

F(θ) = f1(θ)er ⊗ er + f2(θ)I + f3(θ)e×
r . (10)

Complex functions f1(θ), f2(θ), f3(θ) can be found from equation (9). Tensor G equals

G = α1er ⊗ eϕ + α2er ⊗ eθ − α3eϕ ⊗ er − α4eθ ⊗ er + e×
r (11)

while functions f1(θ), f2(θ), f3(θ) satisfy the four differential equations:
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)
,

(12)

where α1, α2, α3, α4 are constant coefficients. Let us assume that the following conditions
hold true: f1 = f ∗

1 , f2 = if̃2, f̃2 = f̃2
∗, f3 = f ∗

3 , α1 = 0, α2 = l(l + 1), α3 = 0, α4 = −1,
where the symbol * denotes the complex conjugate. Then the equations (12) can be rewritten
as the set of equations for real functions f1, f̃2, f3:

df̃2

dθ
+

m

sin θ
f3 + cot θf̃2 = 0 (13)
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df3

dθ
+
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sin θ
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3 . (16)

From equations (15), (16) it follows the link between functions f̃2, f3 and f1:

f̃2(θ) = mf1

sin θ
, f3(θ) = −df1

dθ
. (17)

Then equation (13) becomes identity. From (14) we obtain

1
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d
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sin2 θ

)
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The solutions of this equation are the associated Legendre functions:
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The order of Legendre polynomials is always positive, even for negative values m. So, the
tensor F(θ) is equal to
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Field strengths H(r) and E(r) introduced in equation (7) satisfy equations(
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(21)

Vectors H(r) and E(r) can be found for each specific bianisotropic medium (3). The
fields H(r) and E(r) depend on the angles θ and ϕ, which enter only into base vectors er , eθ ,
eϕ . Field coordinates are merely functions of r.

Besides the differential equations, equations (21) contain also two algebraic equations,
which allow us to exclude two components of field vectors. Eliminating Hr and Er one can
write the system of ordinary differential equations of first order for the rest tangential field
components Ht = IH, Et = IE as

dW (r)

dr
= ikM(r)W (r), (22)

where

M =
(

A B

C D

)
W =

(
Ht

Et

)
A = i

kr
I + e×

r α(r)I − pκ1(r)

k2r2
eϕ ⊗ eθ B = e×

r ε(r)I − pε1(r)

k2r2
eϕ ⊗ eθ

C = −e×
r µ(r)I +

pµ1(r)

k2r2
eϕ ⊗ eθ D = i

kr
I − e×

r κ(r)I +
pα1(r)

k2r2
eϕ ⊗ eθ

p(r) = l(l + 1)/(ε1(r)µ1(r) − α1(r)κ1(r)).

(23)
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Total fields can be found using the matrix V :(
H

E

)
= V

(
Ht

Et

)
V =

(
I − ipκ1(r)

kr
er ⊗ eθ − ipε1(r)

kr
er ⊗ eθ

ipµ1(r)

kr
er ⊗ eθ I + ipα1(r)

kr
er ⊗ eθ

)
.

(24)

Equations of the form (22) were used earlier in papers [10, 12] for layered media with plane
or cylindrical interfaces. The fact, that we can reduce the Maxwell equations to the system
of differential equations of first order for spherically symmetric problems, plays an important
part, because we can apply the formulae derived earlier for electromagnetic wave reflection
and guiding to spherically layered media. The solution of equation (22) can be expressed
by means of product integral for an arbitrary inhomogeneous bianisotropic medium. In the
following section we will obtain the analytical solutions for homogeneous media.

3. Radial solutions for spherical waves in homogeneous bianisotropic media

We define homogeneous bianisotropic media as media with constant values ξ1, ξ2, χξ . In fact,
such homogeneous media are inhomogeneous, because the base vector er depends on the
angles θ and ϕ. Nevertheless, consideration of such defined homogeneous media possessing
the spherical symmetry allows us to find the analytical solutions of the system of differential
equations of first order.

The solutions of equation (22) can be determined by the same way as in the paper [12]
for cylindrical waves. Matrix M can be expanded in 1/r series as

M = M(0) +
1

r
M(1) +

1

r2
M(2). (25)

Constant matrices M(0),M(1),M(2) are equal to
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)
.

(26)

Let us present tangential field vector W and operator matrix M as base vector
decomposition:

W = �wϕeϕ + �wθeθ �wϕ = eϕW =
(

eϕH

eϕE

)
=

(
Hϕ

Eϕ

)
�wθ =

(
Hθ

Eθ

)
M = Mθθeθ ⊗ eθ + Mθϕeθ ⊗ eϕ + Mϕθeϕ ⊗ eθ + Mϕϕeϕ ⊗ eϕ
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(
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)
=

(
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Cθθ Dθθ

)
Mθϕ = eθMeϕ Mϕθ = eϕMeθ Mϕϕ = eϕMeϕ.

Block matrices M(0),M(1),M(2) equal

M(0) = M
(0)
θθ I + M

(0)
θϕ e×

r = i

(−χα −χε

χµ χκ

)
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(
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)
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r
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k
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(
κ2 ε2
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)
eϕ ⊗ eθ ,

(27)

where 1̂ is the 2 × 2 unit matrix.
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From equation (22) it follows the ordinary differential equation of the second order for
the two-dimensional vector �wθ :

�w′′
θ +

(
P +

2

r
1̂

)
�w′

θ +

(
Q +

1

r
P − ν2

r2
1̂

)
�wθ = 0, (28)

where

P = −ik
(
M

(0)
θθ + M

(0)
θϕ M

(0)
θθ M

(0)−1
θϕ

)
Q = −k2M

(0)
θϕ

(
M

(0)
θϕ + M

(0)
θθ M

(0)−1
θϕ M

(0)
θθ

)
ν2 = l(l + 1)

ε2µ2 − α2κ2

ε1µ1 − α1κ1
.

(29)

If matrix Q commutes with P, then one should search the solution of equation (28) as
follows:

�wθ(r) = 1√
r

exp

(
−1

2
Pr

)
�y(r). (30)

It can be found by the direct computation the condition for commutation of two matrices P
and Q: c1P + c2Q = c31̂, where c1, c2, c3 are constants. So, the commutation is possible in
the following cases: (i) P = 0 (c2 = c3 = 0) or Q = 0 (c1 = c3 = 0); (ii) P ∼ 1̂ (c2 = 0)

or Q ∼ 1̂ (c1 = 0); (iii) P ∼ Q (c3 = 0). In further examples (see section 4) matrix Q
commutes with P.

Vector �y satisfies the Bessel equation

�y ′′ +
1

r
�y ′ +

(
Q − 1

4
P 2 − ν2 + 1/4

r2
1̂

)
�y = 0. (31)

The solution of equation (31) is the Bessel function with matrix argument. Therefore, the
solutions �wθ are equal to

�wθ = T1(c1�a1 + c1�a2) + T2(c3�a3 + c4�a4)

T1 =
√

π

2r
exp

(
−1

2
Pr

)
J√

ν2+1/4

(√
Q − 1

4
P 2, r

)
≡ exp

(
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2
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)
js1

(√
Q − 1

4
P 2r

)

T2 =
√

π

2r
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(
−1

2
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)
J−

√
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(√
Q − 1

4
P 2r

)
≡ exp

(
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2
Pr

)
js2

(√
Q − 1

4
P 2r

)
s1 =

√
ν2 + 1/4 − 1/2 s2 = −

√
ν2 + 1/4 − 1/2,

(32)

where js is the spherical Bessel function of the order s; c1, c2, c3, c4 are constants of integration;
�a1, �a2 and �a3, �a4 are two couples of arbitrary noncollinear vectors. These vectors can be chosen
as unit two-dimensional vectors �e1 = (1, 0)T , �e2 = (0, 1)T or as eigenvectors of the matrix
Q−P 2/4. To calculate the function of matrix one can use the spectral decomposition of both
matrix P and matrix Q − P 2/4. The solutions of equation (31) are not necessarily Bessel
functions, but are Hankel functions and modified Bessel functions with matrix argument√

P 2/4 − Qr , too.
Introducing the differential operator

Ẑ = M
(0)−1
θϕ

(
1

ik

d

dr
− i

kr
− M

(0)
θθ

)
we can obtain the tangential magnetic and electric field strengths W as

W = �wθ(r)eθ + Ẑ �wθ(r)eϕ. (33)
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Four constants cj , j = 1, 2, 3, 4 can be included into the vectors of the three-dimensional
space c1 = c1eθ + c2eϕ and c2 = c3eθ + c4eϕ as their components. Hence, the vector W takes
the form

W = S(r)C S =
(

η1 η2

ζ1 ζ2

)
C =

(
c1

c2

)
. (34)

Blocks of the matrix S are expressed by means of the matrix functions T1 and T2:

η1 = �e1T1�a1eθ ⊗ eθ + �e1ẐT1�a1eϕ ⊗ eθ + �e1T1�a2eθ ⊗ eϕ + �e1ẐT1�a2eϕ ⊗ eϕ

η2 = �e1T2�a3eθ ⊗ eθ + �e1ẐT2�a3eϕ ⊗ eθ + �e1T2�a4eθ ⊗ eϕ + �e1ẐT2�a4eϕ ⊗ eϕ

ζ1 = �e2T1�a1eθ ⊗ eθ + �e2ẐT1�a1eϕ ⊗ eθ + �e2T1�a2eθ ⊗ eϕ + �e2ẐT1�a2eϕ ⊗ eϕ

ζ2 = �e2T2�a3eθ ⊗ eθ + �e2ẐT2�a3eϕ ⊗ eθ + �e2T2�a4eθ ⊗ eϕ + �e2ẐT2�a4eϕ ⊗ eϕ.

(35)

From (34) it follows the expression for the evolution operator �r
a , which determines the

tangential field components in the point r, if the fields in the point a are known:

W (r) = �r
aW (a) �r

a = S(r)S−(a). (36)

Pseudoinverse matrix S− satisfies conditions SS− = S−S = E [14, 17], where matrix E is
introduced in (26). Representing equation (34) as superposition of two waves

W =
(

Ht1

Et1

)
+

(
Ht2

Et2

)
(37)

and using the definition of the impedance tensor Eti = �iHti , i = 1, 2, it is easily to find the
impedance tensors of each of two partial waves

�i = ζiη
−
i , (38)

where Ht1 = η1c1, Ht2 = η2c2, Et1 = ζ1c1, Et2 = ζ2c2, η
−
i is the pseudoinverse tensor

(η−
i ηi = ηiη

−
i = I ). If the initial magnetic field amplitudes of the partial waves Ht1(a) and

Ht2(a) are known, then the waves propagate according to the relations

Hti (r) = ηi(r)η
−
i (a)Hti (a) Eti (r) = ζi(r)η

−
i (a)Hti (a). (39)

4. Examples of the radial solutions

4.1. Isotropic spherical layer

Matrices (27) can be easily calculated for an isotropic medium with scalar dielectric
permittivity ε and magnetic permeability µ and α = κ = 0:

M
(0)
θθ = 0 M

(0)
θϕ =

(
0 −ε

µ 0

)
. (40)

Therefore, the quantities P,Q and ν2 equal

P = 0 Q = k2εµ1̂ ν2 = l(l + 1) (41)

while the matrix solutions take the form

T1 = jl(k
√

εµr)1̂ T2 = j−l−1(k
√

εµr)1̂. (42)
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One can write blocks of the matrix S using formulae (35):

η1 = jleθ ⊗ eθ − i

µkr

d(rjl)

dr
eϕ ⊗ eϕ

η2 = j−l−1eθ ⊗ eθ − i

µkr

d(rj−l−1)

dr
eϕ ⊗ eϕ

ζ1 = jleθ ⊗ eϕ +
i

εkr

d(rjl)

dr
eϕ ⊗ eθ

ζ2 = j−l−1eθ ⊗ eϕ +
i

εkr

d(rj−l−1)

dr
eϕ ⊗ eθ .

(43)

Impedance tensors of a homogeneous isotropic spherical layer are equal to

�1(r) = i

kε

(rjl)
′

rjl

eϕ ⊗ eθ + ikµ
rjl

(rjl)′
eθ ⊗ eϕ

�2(r) = i

kε

(rj−l−1)
′

rj−l−1
eϕ ⊗ eθ + ikµ

rj−l−1

(rj−l−1)′
eθ ⊗ eϕ,

(44)

where prime denotes the r-derivative. The field radial solutions can be expressed by means of
the Hankel functions, too. In this case in equations (43) and (44) the Bessel functions jl should
be replaced by the Hankel functions. The spherical Hankel function of the first (second) kind
h

(1,2)
l (r) = jl(r) ± iyl(r) corresponds to the divergent (converging) spherical wave, where

yl(r) = j−l−1(r) is the spherical Bessel function of the second kind. The quantities containing
Hankel functions we will denote as the letters with tilde. For instance, the impedance tensor
of the divergent wave takes the form

�̃1(r) = i

kε

(
rh

(1)
l

)′

rh
(1)
l

eϕ ⊗ eθ + ikµ
rh

(1)
l(

rh
(1)
l

)′ eθ ⊗ eϕ. (45)

4.2. Bianisotropic spherical layer

We consider a bianisotropic medium, which is characterized by the following tensor
parameters: ε = ε1er ⊗ er + ε2I, µ = µ1er ⊗ er + µ2I, α = κ = iχe×

r . For such a
medium one obtains

P = −2ikχ

(
1 0
0 0

)
Q = k2(ε2µ2 + χ2)1̂ ν2 = l(l + 1)

ε2µ2

ε1µ1
. (46)

The matrix solutions T1 and T2 equal

T1 =
(

exp(iχkr)js1(n1kr) 0
0 js1(n2kr)

)
T2 =

(
exp(iχkr)js2(n1kr) 0

0 js2(n2kr)

)
n1 =

√
ε2µ2 + 2χ2 n2 =

√
ε2µ2 + χ2.

(47)

Tensors ηi and ζi (i = 1, 2) are of the form

ηi = eiχkrjsi
(n1kr)eθ ⊗ eθ −

(
i(rjsi

(n2kr))′

µ2kr
− χ

µ2
jsi

(n2kr)

)
eϕ ⊗ eϕ

ζi = jsi
(n2kr)eθ ⊗ eϕ + eiχkr i(rjsi

(n1kr))′

ε2kr
eϕ ⊗ eθ .

(48)

The impedance tensors of the partial waves can be written as

�i(r) = i

kε2

(rjsi
(n1kr))′

rjsi
(n1kr)

eϕ ⊗ eθ + ikµ2

(
(rjsi

(n2kr))′

rjsi
(n2kr)

+ ikχ

)−1

eθ ⊗ eϕ. (49)
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5. Applications of the operator method

In this section we apply evolution and impedance operators introduced above to wave
propagation in dielectric spherical guides and scattering by spherical particles.

5.1. Spherical waveguides

Let us consider a bianisotropic guide, which consists of three regions:

(ε, µ, α, κ) =


(ε1, µ1, α1, κ1) for 0 < r < a

(ε3, µ3, α3, κ3) for a < r < b

(ε2, µ2, α2, κ2) for r > b.

(50)

We assume that the guiding of electromagnetic radiation can occur in the layer a < r < b

enclosed between two claddings. Such wave propagation takes place for atmosphere radio
waves reflecting both from the earth and ionosphere.

In the central region 0 < r < a only waves, which are described by the spherical Bessel
functions of the positive order, can propagate. Spherical Bessel functions of the negative order
become infinite in the point r = 0, and this case cannot be realized in physics. For example,
the solutions of the isotropic central region are functions jl . In the spherical layer a < r < b,
electromagnetic wave is characterized by the evolution operator �r

a , which is expressed by
means of the couple of spherical Bessel or Hankel functions. In the outer cladding extending
endlessly the solution should correspond to the progressing wave originating from the surface
r = b. Such waves are described by the spherical Hankel functions of the first kind h(1). Just
as for the plane [10] and cylindrical [12] waveguides, the dispersion equation of the spherical
guide is of the form

tr(�) = 0 � = (�̃cl2 −I )�b
a

(
I

�cl1

)
, (51)

where � is the adjoint tensor to the tensor �; �cl1 = �cl1(a), �̃cl2 = �̃cl2(b) are the surface
impedance tensors of the central and outer claddings; �b

a is the evolution operator of the
guiding layer continued from the point r = a to the point r = b. If the region a < r < b

contains n bianisotropic spherical layers, then the evolution operator �b
a is equal to the product

of the evolution operators of these layers:

�b
a = �b

an−1
· · · �a2

a1
�a1

a . (52)

Usually a dispersion equation determines the dependence of the propagation constant
(longitudinal wave number) on frequency. For spherical waveguides the dispersion
equation (51) gives the frequency dependence of the wave number l. At a → ∞ the transfer
from the spherical waveguide to the plane one is possible. For such a plane waveguide
the propagation constant is the linear wave number l/a, while the linear distance is aθ .
Electromagnetic modes in spherical waveguides are always leaky, i.e. the wave number is a
complex number: l = l′ + il′′. The real and imaginary parts of the wave number describe wave
propagation and attenuation, respectively.

Let us study the modes of the isotropic spherical guide of the form (50), the inner and
outer claddings of which are characterized by the positive values of the refractive index, while
the guiding layer possesses simultaneously negative values of the dielectric permittivity and
magnetic permeability [18] in the frequency range f = ω/2π < 18.5 GHz:

ε3(ω) = 1 +
ω2

pe

ω2
1e − ω2 − iγeω

µ3(ω) = 1 +
ω2

pm

ω2
1m − ω2 − iγmω

, (53)
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(a)

(b)

Figure 1. Frequency dependence of (a) real l′ and (b) imaginary l′′ parts of the wave number
for the negative-refractive-index spherical waveguide. Dielectric permittivity and magnetic
permeability of the metamaterial are described by formulae (53). Waveguide parameters:
ε1 = 2, µ1 = 1, ε2 = 1, µ2 = 1, a = 1 cm, b = 1.2 cm.

where ωpe = 1.1543 × 1011 s−1, ωpm = 1.6324 × 1011 s−1, ω1e = ω1m = 2π × 5 × 106 s−1,

γe = 2γm = 2π × 6 × 106 s−1. Such a frequency dispersion of the metamaterial (negative-
refractive-index material, left-handed material) was utilized in paper [19].

Negative-refractive-index waveguides support fast and slow guided modes [20, 21]. Fast
(slow) modes have the phase velocity greater (less) than that of the wave in a homogeneous
medium. In figure 1(a) the fast and slow modes are separated by the dotted curve
l′ = Re

√
ε3(ω)µ3(ω). Fast mode wave numbers l′ almost linearly depend on frequency.

Therefore, the group velocity of the fast waves vg ∼ ∂ω/∂l′ changes insignificantly right up
to the frequencies marked by the dotted curve. The imaginary part l′′ of the wave number is
almost constant for fast modes.

Modes 1 and 2 possess the greatest attenuation (see figure 1(b)). The values of l′ and l′′

are approximately equal for such modes. In practical use the waves with small attenuation
are preferred; they are modes 4 and 5. At a frequency near 17.5 GHz the imaginary parts of
their wave numbers become equal. In this point the modes 4 and 5 are distinguishable only in
phase velocity. Near the frequency 18 GHz the mode 4 has the smallest attenuation and can
propagate at a large distance. If l′ is small, then the wave number l ≈ il′′ and such modes are
called emitting waves. Emitting modes do not propagate; they are purely damped (evanescent)
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waves. In figure 1(a) one can note the frequency regions, in which the modes 3, 4 and 5 are
emitting modes.

5.2. Surface electromagnetic waves

Surface electromagnetic waves at the spherical interface are leaky modes as the waveguide
modes considered in the previous subsection. Dispersion equation for surface waves can be
obtained from equation (51), if the spherical layer between two claddings is absent (a = b).
In this case �a

a = E and from (51) it follows the dispersion equation for surface waves:

tr(�̃cl2 − �cl1) = 0. (54)

Let us consider the surface electromagnetic waves at the spherical interface r = a between
the isotropic medium ε2 = ε21, µ2 = µ21 and the bianisotropic medium ε1 = ε11, µ1 =
µ11, α1 = κ1 = iχe×

r (1 is the unit tensor in the three-dimensional space). By substituting the
impedance tensors of each medium (45) and (49) to equation (54) we obtain two dispersion
relations, the first of which is the equation for TE-polarized waves

1

ε1

(ajl(n1ka))′

jl(n1ka)
= 1

ε2

(
ah

(1)
l

(√
ε2µ2ka

))′

h
(1)
l

(√
ε2µ2ka

) (55)

and the second equation describes TM-waves

1

µ1

(
(ajl(n2ka))′

jl(n2ka)
+ ikaχ

)
= 1

µ2

(
ah

(1)
l

(√
ε2µ2ka

))′

h
(1)
l

(√
ε2µ2ka

) , (56)

where n1 =
√

ε1µ1 + 2χ2, n2 =
√

ε1µ1 + χ2, the prime denotes a-differentiation.
Dispersion curves in figure 2(a) express almost linear dependence of the real part of the

wave number on the normalized frequency ka. Evidently, this linear dependence is formed
owing to very weak distinction between isotropic and bianisotropic media. The slopes of all
dispersion curves are approximately equal; therefore, the group velocities of these surface
waves are very close. It should be noted that the curves l′(ka) for TM modes are situated
above the TE-mode curves, but the imaginary parts of wave numbers l′′(ka) for TE modes
are greater. The larger cuts off the less attenuation of the mode. The lower TM mode has the
smallest attenuation of the waves, the curves of which are shown in figures.

5.3. Scattering of electromagnetic waves by spherical particles

Let the electromagnetic wave, the field strengths of which are H (0) and E(0), is incident from
vacuum (ε = 1, µ = 1) on the n-layered spherical particle with bianisotropic constitutive
parameters

(ε, µ, α, κ) =
{
(ε1, µ1, α1, κ1) for 0 < r < a1

(εj , µj , αj , κj ) for aj−1 < r < aj , j = 2, . . . , n.
(57)

The incident wave induces the field inside the spherical particle, which values in the outer
nth cladding can be written as(

H(r, θ, ϕ)

E(r, θ, ϕ)

)
=

∞∑
l=0

l∑
m=−l

eimϕFm
l (θ)Vl(r)�

r
a1

[l]

(
I

�l

)
Ht l (a1), (58)

where the tensor Fm
l is determined by formula (20), Vl(r) is the matrix (24) restoring the total

fields in the nth cladding using their tangential components and corresponding to the number l,
�r

a1
[l] is the evolution operator for the lth spherical wave, �l = �l(a1) is the wave impedance
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(a)

(b)

Figure 2. The solution of dispersion equations (55) and (56) for surface waves at the spherical
interface between isotropic and bianisotropic media. Parameters of media: ε1 = ε2 = 2.1, µ1 =
µ2 = 1, χ = 0.1.

tensor in the first layer at the interface r = a1. The quantities in (58) to be found are the
tangential components of the magnetic field Ht l(a1).

The scattered wave propagates in vacuum and is described in the same way as the field
inside the spherical particle:(

H (sc)(r, θ, ϕ)

E(sc)(r, θ, ϕ)

)
=

∞∑
l=0

l∑
m=−l

eimϕFm
l (θ)V

(sc)
l (r)

(
I

�̃l(r)

)
η̃1l (r )̃η

−
1l(an)H

(sc)
tl (an). (59)

The quantities with tildes are expressed in terms of the spherical Hankel functions of the first
kind h

(1)
l . During scattering we are interested in the fields H (sc), E(sc) in infinity. At r → ∞

the spherical Hankel functions correspond to the divergent spherical wave h
(1)
l (kr) ∼ eikr/r ,

then we obtain

η̃1l (r) ∼ eikr

r
I �̃l(r) ≈ −e×

r V
(sc)
l (r) ≈ E ≡

(
I 0
0 I

)
.
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The impedance tensor does not depend neither on the number l nor on the radial coordinate r.
Therefore, the scattered field can be noticeably simplified and rewritten as(

H (sc)(r, θ, ϕ)

E(sc)(r, θ, ϕ)

)
= eikr

r

(
eikan

an

)−1 (
I

−e×
r

) ∞∑
l=0

l∑
m=−l

eimϕFm
l (θ)H

(sc)
tl (an). (60)

Function of angles θ and ϕ near eikr/r in equation (60) is called the scattering amplitude.
Unknown fields Ht l(a1) and H

(sc)
tl (an) can be determined from continuity conditions for

the tangential components of electric and magnetic fields at the surface of the multi-layered
particle r = an:(

H
(0)
t (an, θ, ϕ)

E
(0)
t (an, θ, ϕ)

)
+

(
H

(sc)
t (an, θ, ϕ)

E
(sc)
t (an, θ, ϕ)

)
=

(
Ht (an, θ, ϕ)

Et (an, θ, ϕ)

)
. (61)

Designating W (0) = (
H

(0)
t , E

(0)
t

)T
and substituting the scattering field strengths and

fields inside the particle one can write the following expression as boundary conditions:

W (0)(an, θ, ϕ) +

(
I

−e×
r

) ∞∑
l=0

l∑
m=−l

eimϕFm
l (θ)H

(sc)
tl (an)

=
∞∑
l=0

l∑
m=−l

eimϕFm
l (θ)�an

a1
[l]

(
I

�l

)
Ht l (a1). (62)

After multiplication of equation (62) by e−im′ϕ sin2 θP
|m′|
l′ (cos θ)/2π and integration over

ϕ from 0 to 2π and over θ from 0 to π we obtain

W
(0)
m,l (an) +

(
I

−e×
r

) (
imH

(sc)
tl (an) + e×

r u
(−1)
l H

(sc)
tl−1(an) + e×

r u
(1)
l H

(sc)
tl+1(an)

)
= im�an

a1
[l]

(
I

�l

)
Ht l (a1) + e×

r u
(−1)
l �an

a1
[l − 1]

(
I

�l−1

)
Ht l−1(a1)

+ e×
r u

(1)
l �an

a1
[l + 1]

(
I

�l+1

)
Ht l+1(a1), (63)

where

W
(0)
m,l (an) = 1

2π

∫ 2π

0
dϕ e−imϕ

∫ π

0
dθ sin2 θP

|m|
l (cos θ), W (0)(an, θ, ϕ)

u
(−1)
l = − l(l − |m| + 1)(l + |m| + 1)!

(2l + 1)(l + 3/2)(l − |m| + 1)!
u

(1)
l = (l + |m|)(l + 1)(l + |m| − 1)!

(2l + 1)(l − 1/2)(l − |m| − 1)!
.

(64)

First, the magnetic field strengths Ht l (a1) should be found. For that one should multiply
equation (63) by the block row matrix

(
e×

r I
)
. Then all scattered field amplitudes H

(sc)
tl (an)

disappear and the following recurring relation can be written for l > |m|:
Ht l+1 = AlHt l + BlHt l−1 + Cl , (65)

where

Al = − im

u
(1)
l

[(−I e×
r

)
�an

a1
[l + 1]

(
I

�l+1

)]− (
e×

r I
)
�an

a1
[l]

(
I

�l

)

Bl = −u
(−1)
l

u
(1)
l

[(−I e×
r

)
�an

a1
[l + 1]

(
I

�l+1

)]− (−I e×
r

)
�an

a1
[l − 1]

(
I

�l−1

)
Cl = 1

u
(1)
l

[(−I e×
r

)
�an

a1
[l + 1]

(
I

�l+1

)]− (
e×

r I
)
W

(0)
m,l (an).

(66)
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Number l can take the minimal value l = |m|. Equation (65) is not satisfied for l = |m|,
because u

(1)
l becomes zero. At l = |m| from the boundary conditions it follows the equation

u
(1)
l A|m|Ht |m| + u

(1)
l C|m| = 0 (67)

from which the mth magnetic field amplitude can be easily found

Ht |m| = −(
u

(1)
l A|m|

)−(
u

(1)
l C|m|

)
. (68)

Recurring equations (65) can be rewritten by means of one vector Ht |m|+1 as

Ht |m|+q+1 = hq + GqHt |m|+1 q = 1, 2, . . . (69)

where

h1 = C|m|+1 − B|m|+1
(
u

(1)
l A|m|

)−(
u

(1)
l C|m|

)
G1 = A|m|+1

hq = C|m|+q + A|m|+qhq−1 Gq = B|m|+q + A|m|+qGq−1.
(70)

Vectors hq and tensors Gq can be calculated for any integer number q. Let us assume
that we have computed the magnetic fields until Ht |m|+N+1, where N � 1. The values of
amplitudes Ht l should decrease, if l increases, in order that solution written as the l-series
converges. That is why there is a great number N, for which the magnetic field becomes zero

Ht |m|+N+1 = 0. (71)

From this equation it is easy to find Ht |m|+1:

Ht |m|+1 = −G−
NhN . (72)

The field amplitudes inside the spherical particles are calculated according to
formulae (69):

Ht |m|+q+1 = hq − GqG
−
NhN q = 1, . . . , N − 1. (73)

To determine the scattered magnetic field amplitudes H
(sc)
tl we multiply the boundary

conditions (63) by the block row matrix
(
0 I

)
. Recurring relation for the scattered fields takes

the form

H
(sc)
tl+1 = A

(sc)
l H

(sc)
tl + B

(sc)
l H

(sc)
tl−1 + C

(sc)
l , (74)

where

A
(sc)
l = im

u
(1)
l

e×
r B

(sc)
l = −u

(−1)
l

u
(1)
l

I

C
(sc)
l = 1

u
(1)
l

[
im

(
0 I

)
�an

a1
[l]

(
I

�l

)
Hl + u

(−1)
l

(
0 e×

r

)
�an

a1
[l − 1]

(
I

�l−1

)
Hl−1

+ u
(1)
l

(
0 e×

r

)
�an

a1
[l + 1]

(
I

�l+1

)
Hl+1 − (

0 I
)
W

(0)
m,l (an)

]
. (75)

Equation (74) can be solved in the same way as equation (65). In formulae (67)–(73)
one should replace Al , Bl, Cl by A

(sc)
l , B

(sc)
l , C

(sc)
l , respectively. In such a way we can

find scattered magnetic fields H
(sc)
tl , where l = |m|, . . . , |m| + N . The scattered field is

characterized by the differential scattering cross-section (the power radiated in the direction
er per unit solid angle)

dσ

do
= r2 |H (sc)|2

|H (0)|2 . (76)
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By substituting the expression for the scattered magnetic field (60) into the formula for
differential cross-section one obtains

dσ

do
= a2

n

|H (0)|2
∣∣∣∣∣

∞∑
l=0

l∑
m=−l

eimϕFm
l (θ)H

(sc)
tl (an)

∣∣∣∣∣
2

. (77)

Polarization averaging (angle ϕ averaging) gives the equation

dσ

do
= a2

n

|H (0)|2
∞∑

m=−∞

∣∣∣∣∣∣
∞∑

l=|m|
Fm

l (θ)H
(sc)
tl (an)

∣∣∣∣∣∣
2

, (78)

where θ is the scattering angle. In the sum over l only first N amplitudes H
(sc)
tl are nonzero.

So, one should execute the following steps to solve the scattering problem.

(i) Choose the incident wave and parameters of the multi-layer dielectric spherical particle.
(ii) Find the tensors η and ζ (35) for each spherical layer. Calculate evolution

operators (36) and impedance tensors (38) of the layers.
(iii) Determine the amplitudes of initial fields W

(0)
m,l using formula (64).

(iv) Compute matrices Al, Bl and vectors Cl by substituting evolution operators and
impedance tensors into equations (66).

(v) Determine the values of the vectors hq and matrices Gq from the recurring
relations (70).

(vi) Find the magnetic field amplitudes at the surface of the spherical particle Ht l from l = |m|
to l = |m| + N (formulae (68), (73)).

(vii) Substitute the fields Ht l into (75). Carry out the items (v) and (vi) to solve the recurring
equations (74) for the scattered fields.

(viii) Compute the differential cross-section (78) using the fields H
(sc)
tl .

As an example we consider the incidence of the x-polarized plane electromagnetic wave
with unit amplitude |H (0)|2 = 1(

H (0)(r, θ, ϕ)

E(0)(r, θ, ϕ)

)
= eikr cos θ

(
cos ϕ sin θer + sin ϕ cos θeθ + cos ϕeϕ

−sin ϕ sin θer − cos ϕ cos θeθ + sin ϕeϕ

)
(79)

onto the isotropic dielectric particle

(ε, µ) =
{
(ε1, µ1) for 0 < r < a1

(ε2, µ2) for a1 < r < a2.
(80)

For the incident field (79) only two values of the number m are possible: m = −1 and
m = 1. Therefore, the differential cross-section equals

dσ

do
= a2

2

∣∣∣∣∣
∞∑
l=1

F 1
l (θ)H

(sc)
tl (a2,m = 1)

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
l=1

F−1
l (θ)H

(sc)
tl (a2,m = −1)

∣∣∣∣∣
2
 . (81)

In figures 3 and 4 the results of calculation of differential cross-section for the light
scattered by the spherical particles (80) are presented. We computed magnetic fields H

(sc)
t |m|+q

until q = N = 15.
For lower frequencies of the incident light (dashed line in figure 3) the scattering occurs

approximately evenly in all scattering directions. The scattering maximum falls on the angle
θ = 0◦. At greater frequencies the scattering becomes nonuniform. Differential cross-section
takes maximal values for the angles θ = 0◦; 180◦, while minimal scattering occurs at 90◦.
Such angle dependence can be explained as follows. At normal incidence electromagnetic
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Figure 3. Differential cross-section versus scattering angle for two different frequencies.
Parameters: ε1 = 2 + 0.2i, µ1 = 1, ε2 = 3 + 0.1i, µ2 = 1.2, a2 = 1.3a1.

.

.

.

.

.

.

Figure 4. Differential cross-section versus scattering angle for two different thicknesses a2.
Parameters: ε1 = 2 + 0.2i, µ1 = 1, ε2 = 3 + 0.1i, µ2 = 1.2, ka1 = 2π .

waves of large frequency strongly reflect from the spherical particle. For other angles of
incidence the greater part of the power passes through the particle. That is why the forward
and backward scattering are maximal. The increase of the outer layer radius does not lead
to the essential change of the scattering pattern (see figure 4). One may note the deepening
of the scattering minima near the angles θ = 20◦ and θ = 160◦, as well as the invariability of
the forward (θ = 0◦) and backward (θ = 180◦) scattering.
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6. Conclusion

Separation of variables r, θ and ϕ in the field strengths plays an important part. Owing
to separation we can formulate the operator approach and use the same formulae for multi-
layer structures with plane, cylindrical or spherical symmetry. For example, both for plane,
cylindrical and spherical waveguides the dispersion equation (51) is the same. One should
only substitute the appropriate evolution operators and surface impedance tensors of the layers.
The separation of variables contributes also to formulating a more clear algorithm to determine
the scattering fields than that using the method of spherical vector wavefunctions. As a matter
of fact, the scattering problem is reduced to the execution of addition and multiplication of
2 × 2 and 4 × 4 matrices, and such operations do not take much time to calculate.

The operator method allows us to describe surface waves and waveguide modes applied
in optical electronics and in the study of electromagnetic wave propagation in the Earth
atmosphere. The light scattering by the dielectric spherical particles can be utilized in antenna
and satellite communication system designs. In further publications we assume to investigate
vector electromagnetic beams on the basis of general spherically symmetric solutions.
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